AD=A103 884

UNCLASSIFIED

WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/6 12/1
THE ASYMPTOTIC DISTRIBUTION OF THE PRODUCT ESTIMATOR.(U)

AUG 81 C WUr» D CHANG DAAG29=80=C=0041
MRC=TSR=2253 NL




MRC Technical Summary Report # 2253

THE ASYMPTOTIC DISTRIBUTION OF THE
PRODUCT ESTIMATOR

C.-F. Wu and D.=-S. Chang

ADA103884

Mathematics Research Center "
University of Wisconsin—Madison \/\ /

610 Walnut Street \

Madison, Wisconsin 53706 /)}))

August 1981 DT l C

(Received June 19, 1981) : mELECTE
e, B
o SEP8 1081,
: Sl
2",‘_{).}
%
7}?X> .
S Approved for public release
. . i" Distribution unlimited
i
Sponsored by
U. S. Army Research Office and National Science Foundation
P. O. Box 12211 Washington, D. C. 20332
Research Triangle Park
North Carolina 27709
' 81 9 08 10/
PR | ' e X . .

\

i

MRS . X TN Inprorrpmy iy



VW

~ ‘"'”?.’-E‘"‘!&?i"‘ﬁ"" ey

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

THE ASYMPTOTIC DISTRIBUTION OF THE PRODUCT ESTIMATOR
c.~F. wa'’2 and D.-S. Chang"’1’3
Technical Summary Report #2253
August 1981
ABSTRACT
- The exact formulas for the bias and variance of the product estimator
under simple random sampling are given. Its asymptotic normality is
rigorously established under weak and interpretable regularity oconditions on

the finite populations. No superpopulation model is assumed. H&jek's

projection method is the key tool in our proofs.
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SIGNIFICANCE AND EXPLANATION
Suppose we want to estimate the average acres of corn per farm (denoted
Y) in the state of Wisconsin based on a simple random sample of X values and
availaiie information on the size of each farm (denoted X). 1In this
particular instance, X and Y are positively correlated. It is common to

use the ratio estimator defined as (y-sample mean) °* (x-population mean)/(x-

PRSI

sample mean) as the estimator of y-population mean. The ratio estimator is

L 3 very simple to compute and is efficient for a general class of populations.
\?j In case X and Y are negatively correlated, the product estimator defined
:; as (y-sample mean) * (x-sample mean)/(x-population mean) is more efficient for
- estimating the y-population mean than the ratio estimator. Its ocomputation is
il ' as simple as the ratio estimator. Sometimes we want to find a confidence
}? interval for the y=-population mean. Since no exact finite-sample distribution
- theory is available, we study the asymptotic normality of the product
**: estimator. Our regularity conditions are directly on the finite
T populations. No artificial superpopulation model is assumed. The conditions
tii are weak and interpretable in practical terms so that the practitioners may
é;i find them useful.
,:V
#

The responsibility for the wording and views expreased in this descriptive
summary lies with MRC, and not with the authors of this report.

T Xy




oad . Aai.

THE ASYMPTOTIC DISTRIBUTION OF THE PRODUCT ESTIMATOR
c.=F. wu'’2 and D.-§. Chang *1¢3

1. Introduction

In sample surveys the ratio estimator én = ;§/§ using a suitable
auxiliary variate X is one of the most commonly adopted estimates of the
population mean of character Y under study. In case both variates Y and
X are positive (or one positive and the other negative) and the corretlation
coefficient 0 between Y and X has high negative value (or high positive
value), the product estimator ép = §§/i is preferred. Throughout the paper
we assume the sample is obtained from simple random sampling (s.r.s). It is
known (Murthy, 1964) that the product estimator has smaller mean square error
than the unbiased estimator ; . 1f o 1is smaller than minus one-half of the
ratio of the oefficients of variation of X and Y. Though the asymptotic
behavior of ratio and regression estimators was discussed in Scott and wu
(1981), the oorresponding results for the product estimator were not
satisfactorily given in the literature. Srivastava's result (1966) is not
rigorous, is for infinite population, and regularity conditions were not
spelled out. Had the conditions been given there, they would be unnecesgsarily
strong because his approach is not powerful enough. The technique of proof
for the ratio egstimator in Scott and Wu (1981) does not work for the product
estimator. The key technical problem is that both ; and x involve the
same random sample. As explained in more detail in section 3, standard

probability results can not be directly applied to this problem. The key

* National Tsing Hua University, Hsinchu, Taiwan.

1 Sponsored by the United States Army under Contract No. DAAG29-80-C-004t.
2 Supported by the National Science Foundation under Grant No. MCS=7901846.
3 Supported hy the National Science Council, Republic of China.
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technical tool employed in this paper is Hajek's projection method which has

proved successful for many other problems in statistics. We project the
product variable ; X onto a linear space of random variables, thus obtaining
a variable of simpler form. We then prove the asymptotic equivalence of the
two variables. The asymptotic normallty of the latter variable was proved by t
using the Lindeberg-Hajek Central Timit Theorem. The required regularity
conditions are weak and easily interpretable.

In the next section we derive exact formulas for the bias and variance of
the product estimator. The asymptotic nrormality of the product estimator is
proved in section 3, using the projection method outlined in the previous f
paragraph. The asymptotic consistency of a variance estimator is established
in section 4. Finally the two results are combined to give the main Theorem

3, which is followed by some remarks on reqularity conditions.
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, 2. Bias and Variance of the Product Estimator
N Before discussing the asymptotic results of the product estimator, we
}
o first derive the exact formulas of the bias and variance of the product
; estimator and use the latter to obtain an approximate variance in the large
sample case. The technique is the same as in Goodman (1960) or Sukhatme and w
|
; Sukhatme (1970, p. 190-192). ?
! |
: In population U = {1,2,...,N}, let £ = n/N be the sampling fraction,
_ j ; and x be the sample means of simple random sample of size n of the
?i' variates Y and X respectively, and Y and X be the ocorresponding
N population means. Denote
i N
-1 -a =B
i Sqp = M=170 T (0 (x,-K)
1 and (1)
Caﬁ = saB/Y X , a,8=0,1,2 .
.. Then, we have the following
,_‘." Lem“\a 1-
- . —-—— == 1-f
e (i) E(yx) = ¥X(1 + = 11)
o and
2 - == 2 1=f 1, Ne2n |
*1 (i1) Var (yx) = (¥YX) ( " ){czomoz-fzc“ + " [2(—'-'1‘1_.2 ) (C12+c21)
.
R d
(n=1) (N~1) (N-n~1) 2
n(N=-2) (N=-3) (€92%20*11) (2)

_ N-n cz A N2+N-6nN+6n2 c
N 11 2 (N=2)(N=3) 22 °

8% = (x-X)/X , 8y = (y=Y)/¥ .

Then, using Theorem 2.3 of Cochran (1977), we have
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E(yX) = YX[1+E(Sy6X)] = ¥X(1 + lﬁﬁ ¢,y -

Using results in Sukhatme and Sukhatme (1970, p. 190-192) and after some * ;

simplication, we have

Var(y%) = E(y%)2 - (E(yx)]°
= (T%) 2B (67) 2 (8%) 242 (67)26%+267 (6%) 2+ (67) 2+ (8%) 2

(E(3%)]2

+40y8x+28y+28x+1]

=2 1-f 1 [ N-2n
= (0% (=) {czo+c a0, + = [}( 1(C,yytC,,)
(n=1) (N=1) (N=n=1) 2. _N-n 2
A=) (n-3)  C20%02%%C) TR Clg]

N2 +N-6nN +6n2
22 [°

1
YT T2 (93

Applying the results in Lemma 1, we have the following formulas for the

-~
- - -

product estimator Yp = yx/X .
(i) E(¥) -7 ="Ltc ¥
P n 11
and
- 2 o g2 et
(ii) Var(Yp) =Y ( n ) {C20+C02+C11

(n=1) (N=1) (N-n-1)
[}‘ )(c 1*C12) Y TN e

. 2 N~-n 2
x (C)0C02%2C ) N C11]

1
* 73 TN-2) (N-3)

N2+N—6nN+6n2
22




: The formula Var(yx) in Goodman (1960, (21), p. 712) differs from ours
in that Goodman's treatment of product is for sampling from infinite
~ population. We should point out that the coefficient of 2?1 in his formula

(21) should be n~2 instead of n'3, a minor error which disappearas as

n + %,
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3 The Asymptotic Distribution of the Product Estimator

Following the usual formulation of the central limit theorem, we embed
our finite population in a sequence of populations, (Uv} s+ indexed by v

where n, and Nv both increage without bound as v + ®, And let

{sv) be a sequence of simple random samples with sample size n_ and sample

v

Similarly, let

Y and X be the population means of Y and X, sz
v v vy

means ;v' ;v of Y and X respectively in Sy
the population
variance of Y in U,, and £, = n, /N, the sampling fraction. All our

results are based on the following two standard theorems in finite populations

L > to denote convergence in

L > and

(see Scott and wu, 1981)., We use
distribution and in probability respectively.
Theorem A.

Suppose nv + @ and Nv - nv *® as v ** Then, under simple random
sampling,

-’:fl (v, -¥)

Y1-f S
v vy

> N(0,1) as v * &

satisfies the Lindeberg-Hajek ocondition

if and only if {yv }v

3°v.3

(y . - ¥.)?
lim z ——!1————5—— = 0 for any € > 0 ,
v T (g) (N =1)8
v v vy

where Tv(e) is the set of units in U, for which

ly . - ¥ |
__VI__"_”/,: .

71-£f 8
v vy
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Theorem B.
Suppose {yvy} satisfies the condition
2
- +» + ©
(1 fv)SVy/nv 0 as v (B)
Then, under simple random sampling,
(i) E va - le >0
and
- - P
(i1) Yy =Y —/™> 0 as v *® ,
v v
The main technical problem stems from the fact that both ; and x
involve the same set of indicator variables Ii’ further complicated by the
dependency of I; among i=1,2,...,8. As far as we know, no existing
results in probability theory can be directly applied to our problem. We
project the variable Ev = n3§v§v onto the space of linear combinations of
[Ii}§=1 and establish the asymptotic equivalence of Ev and its
projection. Since the projedtion variable is a weighted sum of 1 9%, its

asymptotic normality can be established relatively easily.

For simplicity we drop the subscript v in all the derivations and

proofs.

Let I; be the indicator of unit i in simple random sample s without

replacement of size n. We can write the centered version of the product

variable § = n"xy as

N N
n=§&-8) =) ) xv¥,III, I, -EII)] . (5)
te1 §=1 343 i3

We project N onto the space Z of linear combinations of {1112_1, i.e,,

N
z=1{zlz= ) x is real-valued constant for i = 1,..,.,N}

i=1

1137 %y

Let the projection variable be W. Then we have (Lehmann, 1975, p. 362),
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N
: w= 1 E(m) . (6)
‘ i=1
-4 By taking conditional expectation, we have the following properties,
f where f = n/N and f1 = (n=1)/(N~-1),
‘f (1) E(I;) = £ ’ (11)  EB(I;14) = £E,
(7)
1 1
| (iii) E(Ijlli) = §oin-I), (iv) E(IkIjIIi) = £, qo3(n=21))
t for i #3 #k=1,2,.0.,N,
- From (7) we have (for details, see Chang, 1981)
4
P 1
\ E(nlI)=f—lﬁ§§(6x+G )+—Nﬂ:-2-§)——(xv -l):xy) (1,-£)
i : 1 1 N=2 77 T wmenN-2) 1 TN kk] it
-
for i = 1,2,...,N and from (6), we obtain
) )
W= a (I -f) = {b,+c ) (I, -f) (8)
g=q 4 mq 1A
p ! where a; = b, +c; and ,
. N® ==
- b, = £, oz ¥(6x +8y)
-3 o oMM o1 Yy (9
e i (N-1)(N-2)'"i74i N k k7’
a4 k=1
oy and - -
' xi-x Y,-Y
Gx T . Gy B e——— ’ i= 1,2,00.,“ .
: 17 % L7y
Next, by (2.26) and (2.27) in Cochran (1977), we have
-
. N ) N
var(w) = | (b +c )" Var(r,) + D) (b; +c,) (b, +c,)Cov(I, 1,)
i=1 i*y
N N
2 2. 2 1
= (£-£°) 31 (b{+ci42bc)) - = E#E (b;b +e e 42b.c) | »

{
L& ) )
¥ 4
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N N
From Ei=1bi = 213101 = 0 and (9), we have ]

»ﬁ . XNZ [ W2 __jlz
b = - b.b, = |£ (==)XY| (N-1)(C, +C +2C,.) ,
4oq & fe5 13 1'N-2 207702711

N N r
2 N(N=2n) == |2
121 ot LE 4%y ._<u-1)(u-2)“] (N=1)

(10)

(N=1) (N=2) 2
x 1€, ¢ 2 €

IN=2
+2(C, ¥ YN S ”]

and

N N 3
_ . No(N-2n) -2-2
) bjcy = I1 b, = £, 2 XY (€%, 1%C50%C02%2C 4

3 y o
i=1 i#j (N=-2)

Derivation of the identities in (10) follows easily from definition (9) and

formulas in Sukhatme and Sukhatme (1970, p. 190-192). Thus, finally we obtain

2
_ 3, =222 (n=1)N 2
var(w) = n” (1-£)X°Y l;“"'”‘“'z’:l (C,0¥C0,*2C )

{n-1) (N-2n)N3

2
+ 2 (C. 4C, 4C. +C._+2C. )
n e Zmeg)? 21 1276207027
(1)
1 [ no-2n) 2 (N=1) (N=2) 2
2 |N-1) (8-2) Caa* 2 €11

N
3N-2
+ 2(c, 40 40, 09C0,* c”+1):[ .

Further, by (5) and (6), we can decompose

n=w+9Q

and verify the identity
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Var(n) = vVar(w) + var(Q). (12)

Derivation of (12) is similar to that in Lehmann (1971, A. 168, p. 363). For
details see Chang (1981, Lemma 4.2).
Next, we want to demonstrate the asymptotic equivalence between 10 and

W as follows.

Lemma 2.

Var(nv)/Var(wv) + 1 as v * ® provided
(1) n and N both + ® ag v * %,
v v

(ii) iv, iv and € are all uniformly bounded in v

vaB, o,B8=0,1,2

and

(iii) {cv20+cv02+2cv11}v is bounded away from zero uniformly in v, where
CvaB is defined in (1) for population U, .

Proof .

Under conditions (i), (ii) and (iii), both vVar(n) and Var(W) in (2)
3=2=2

and (11) are dominated by n'Y X (C20+C02+2c11) as v * ®, This proves Lemma
2.
Similarly, under conditions (i), (ii) and (iii) of Lemma 2, both
Var[ZN b,(1,-f)] and Var{%) are dominated by n3‘-1-2;(2(c +C_ .+2C,,) as
i=1 171 : 20 02 1

v * ®, Therefore, we have

Lemma 3.

Under the same oonditions as in Lemma 2,

N

\'4
var(W_)/var( ) b, (I

-fv)] + 1 as v * %9,
i=1

vi

Now we let

=10~
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. =
- X,

h; esdle ¢

N

wr = ) (8x +8y )(I. -f) = Y (8x +8y )
=g LU jes 71
and (13)
Xi Yi
T(e) = i) —+=-2 > €/Var(w*) s, €50
X Y

Then, by applying the Lindeberg~Hajek Theorem A to W* directly, we have
Lemma 4.
Let W: and Tv(e) be defined in (13) for population U,. Suppose that

n **® and N=-n *+*%® as v * %, Then
v v Vv
Wt //Var (WF) ~L s N0,1) as v+

if and only if {x /X +Y /¥ } . satisfies the Lindeberg-Hidjek condition
vi' v vi'Tviv,j
{A).
Combining Lemmas 2, 3 and 4, we establish the asymptotic distribution of
the product estimator as follows
Theorem 1.
Under s.r.s,
/n_ (¥ _-Y)
P

Yy _p L > N(0,1) as v + @

Vi- Y ¥C +
1=t Y C20%Cv022C 11

provided

(1) n *® and N -n *+® ag v + %,

v v Vv

(i1) {xvj/xv + ij/Yv}v,j satisfies the Lindeberg-Hajek condition (A),
(iii) xv, Yv and CvaB, a,B=0,1,2 are all bounded uniformly in v
and

+ .
(iv) {cv20+cv02 2cv11}v is bounded away from zero uniformly in v

-]ll=-
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Proof.
Decompose
/-3 ¥ -5t )
(p ) ) /a (j o
Y1-f ¥\ Vi-£ ¥ 7
1-f Y C204C°2+2C1‘ 1-f Y C204C02+2C11
1-f C11
el
20 02 11

The second term converges to zero by condition (i), (iii), and (iv). The

first term can be rewritten as

W+ o L. I YVar (W)
XY Y
Y03(1-g) F¥ VCpo*Co*2C,, YVar(w) ¥ 3

7T /<
(1-£) ¥ YCy0%C2%2Cy,

where, by conditions in (i), (iii), (iv), Lemma 2 and (12),

YVar Y/ XY /c__+c__+2¢c_. *
var(w) ¥ 3, o) XY /C,4C o+2C, 1

and

o/fVar(W) —2—> 0 as v + =,

N N
Wwrite B =1 . b (I,-£), ¢ =L . ¢ (I,~f) and by (8), we have
L - B . ./ Var(B) c
Martwm  Marm W At

Then, similarly, by conditions (i), (iii), (iv), Lemma 3 and (10),
c//Vvar (W) ——P> 0




/Var(B)//Var(Ww) —> 1 ag v + = ,

Since, by (9) and (13),

= B we

YVar(B) YVar(w*)

which converges in law to N(0,1) by Lemma 4. The proof is completed by

applying Slutsky's Theorem.
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4. Variance Estimation

S A

20 “02

its sample analogue ;2(c20+c02+2c11). Let

{ In practice, of course, fz(c + +2c") is unknown and is estimated by
i

2 1-f =2
v(Yp) ==y (c,.tc +2c11)

20 02

P

be an approximate variance estimate of Var (l?p) « Then, we prove the

consistency of v(‘?p) as follows.

4

1

! Theorem 2.

3

! Under S.r.s.,

~i

a 1-f

) = vyis2 P

vz, )/ n, (€ 0% Cy02* 2 yq) > 1 a8 v >

i

provided

E (1) n *® and N *® ag vy * ®,

R v v

e = .2 - 2

) (11) {(xvj-xv) /svoz}v'j and {(ij-yv) /szo}v,j both satisfy
- condition (B) of Theorem B.
; (111) xv, Yv and CoaB , a,8=0,1,2 are all bounded uniformly in v
i: and
.y ,

X (iv) {Dv} and {cv2°+cv°2+2cv"} both are bounded away from zero
b uniformly in v, where Dv is the population correlation

j coefficlient of X and Y in U,

. Proof .

?‘ Write

H

= 1-£ =2 1 ¥)2 .
(¥ )/ (=¥ (c, 4C,,+2C,  )=1 = (X)ée, <
P n 20 702 1 (02°+C°24-2C”) I 02 02

-2 -2

X X
+ (i) 0Ca0 | * 2 | (£) eqycyy [t e
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where,
- 2 s o =2
7 02 "02 02 S02 i '
-2 s
X) e,.~,, = ¢, (22— -1)
7 20 720 20 s20
and
@ il
c,.~C = C — -9 .
; 11 1 11 S11 ; ;

By condition (iii), the uniform boundedness of C,,q and C,4, imply

that the variances of ;/i and ;/f converge to 0. Together with the

unbiasedness of x and ; '
%’—P-">1 ’¥-__P_>1 .
X y
Further, by condition (ii) and Theorem B, we have
%02 p %20 »p
E—_ —_— 1, ;—— _— 1 .
02 20
Finally, since
511 1, %11
I LT
11 1820502

which converges to zero in probability by the uniform boundedness of {02},
condition (ii) and the proof of Theorem 4 of Scott and Wu (1981, p. 101%,)

Hence we ocomplete the proof.
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S. The Main Result and Some Remarks

By combining Theorems 1 and 2, we state the main result of the paper.

Theorem 3.

Under s.r.s,

/n (Y ¥
I"v vp v) L > N(0,1)

P

M=t ¥, YCr0%Cy02%2% 14

as v * ® provided

(i) n *+® and N=-n * ® a3 vy + @,
v v Vv
- - » )
(i1) {xvj/xv + ij/Yv}v,j satisfies the Lindeberg-Hajek condition (a),
- 2 - 2
(1i1) {(xvj-xv) /svoz}v,j and {(vvj-vv) /szo}v,j both satisfy condition
(B) of Theorem B. )

(iv) xv, Yv and cvaB, a,B=0,1,2 are all bounded uniformly in v .
and
2
(v) {Dv} and {cv20+cv02+2cv11} both are bounded away from zero
uniformly in v,
Remarks .

Condition (ii) says that the oontribution to the total sum of squares of

the (X./X + ¥ /)'s  from grogs outliers about their mean value should be

3 3
relatively small. Condition (iii) on Yj and xj suggests, respectively,

that the coefficient of variation of y and x should be reasonably small.
Condition (iv) is weaker than the more typical assumption in the literature
(e.g., David and Sukhatme, 1974; Krewski, 1978; Krewski and Rao, 1981):

X,Y¥,c

v Yo * X R ¥ R ccB as v * ®, Condition (v) is assumed to avoid

va
trivial cases and is satisfied in most practical situations.

=16~
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